Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Transl Psychiatry ; 12(1): 319, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941107

RESUMO

Bromodomain containing 1 (BRD1) encodes an epigenetic regulator that controls the expression of genetic networks linked to mental illness. BRD1 is essential for normal brain development and its role in psychopathology has been demonstrated in genetic and preclinical studies. However, the neurobiology that bridges its molecular and neuropathological effects remains poorly explored. Here, using publicly available datasets, we find that BRD1 targets nuclear genes encoding mitochondrial proteins in cell lines and that modulation of BRD1 expression, irrespective of whether it is downregulation or upregulation of one or the other existing BRD1 isoforms (BRD1-L and BRD1-S), leads to distinct shifts in the expression profile of these genes. We further show that the expression of nuclear genes encoding mitochondrial proteins is negatively correlated with the expression of BRD1 mRNA during human brain development. In accordance, we identify the key gate-keeper of mitochondrial metabolism, Peroxisome proliferator-activated receptor (PPAR) among BRD1's co-transcription factors and provide evidence that BRD1 acts as a co-repressor of PPAR-mediated transcription. Lastly, when using quantitative PCR, mitochondria-targeted fluorescent probes, and the Seahorse XFe96 Analyzer, we demonstrate that modulation of BRD1 expression in cell lines alters mitochondrial physiology (mtDNA content and mitochondrial mass), metabolism (reducing power), and bioenergetics (among others, basal, maximal, and spare respiration) in an expression level- and isoform-dependent manner. Collectively, our data suggest that BRD1 is a transcriptional regulator of nuclear-encoded mitochondrial proteins and that disruption of BRD1's genomic actions alters mitochondrial functions. This may be the mechanism underlying the cellular and atrophic changes of neurons previously associated with BRD1 deficiency and suggests that mitochondrial dysfunction may be a possible link between genetic variation in BRD1 and psychopathology in humans.


Assuntos
Histona Acetiltransferases , Esquizofrenia , Metabolismo Energético , Histona Acetiltransferases/fisiologia , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Isoformas de Proteínas/metabolismo , Esquizofrenia/genética
3.
Theranostics ; 11(13): 6278-6292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995658

RESUMO

Background: Ovarian cancer is a fatal gynecologic malignancy that is found worldwide and exhibits an insidious onset and a lack of early warning symptoms. Despite ongoing studies, the mechanistic basis of the aggressive phenotypes of ovarian cancer remains unclear. Lysine acetyltransferase 6A (KAT6A) is a MYST-type histone acetyltransferase (HAT) enzyme identified as an oncogene in breast cancer, glioblastoma and leukemia. However, the specific functions of KAT6A in ovarian cancer remain unclear. Methods: Immunohistochemistry (IHC) staining and western blotting were performed to characterize KAT6A protein expression in ovarian cancer tissues and cell lines. The biological functions of KAT6A in ovarian cancer were evaluated by cell proliferation, wound healing and transwell invasion assays in vitro. Tumorigenesis and metastasis assays were performed in nude mice to detect the role of KAT6A in vivo. Mass spectrometry and immunoprecipitation assays were performed to detect the KAT6A-COP1 interaction. An in vivo ubiquitination assay was performed to determine the regulation of ß-catenin by KAT6A. Results: In the present study, we revealed that KAT6A expression is upregulated in ovarian cancer and is associated with patient overall survival. Downregulation of KAT6A markedly inhibited the proliferation and migration abilities of ovarian cancer cells in vivo and in vitro. Additionally, the inhibition of KAT6A induced apoptosis and enhanced the sensitivity of ovarian cancer cells to cisplatin. Furthermore, KAT6A bound to and acetylated COP1 at K294. The acetylation of COP1 impaired COP1 function as an E3 ubiquitin ligase and led to the accumulation and enhanced activity of ß-catenin. Conclusions: Our findings suggest that the KAT6A/COP1/ß-catenin signaling axis plays a critical role in ovarian cancer progression and that targeting the KAT6A/COP1/ß-catenin signaling axis could be a novel strategy for treating ovarian cancer.


Assuntos
Histona Acetiltransferases/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias Ovarianas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Animais , Antineoplásicos Alquilantes/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Cisplatino/uso terapêutico , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Xenoenxertos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/genética , Humanos , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/tratamento farmacológico , Prognóstico , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Ensaio Tumoral de Célula-Tronco , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitinação , beta Catenina/metabolismo
4.
Clin Cancer Res ; 27(15): 4410-4421, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031055

RESUMO

PURPOSE: Gemcitabine-based chemotherapy regimens are first-line for several advanced cancers. Because of better tolerability, gemcitabine + cisplatin is a preferred neoadjuvant, adjuvant, and/or palliative chemotherapy regimen for advanced bladder cancer. Nevertheless, predicting treatment failure and overcoming resistance remain unmet clinical needs. We discovered that splice variant (V1) of HYAL-4 is a first-in-class eukaryotic chondroitinase (Chase), and CD44 is its major substrate. V1 is upregulated in bladder cancer and drives a malignant phenotype. In this study, we investigated whether V1 drives chemotherapy resistance. EXPERIMENTAL DESIGN: V1 expression was measured in muscle-invasive bladder cancer (MIBC) specimens by qRT-PCR and IHC. HYAL-4 wild-type (Wt) and V1 were stably expressed or silenced in normal urothelial and three bladder cancer cell lines. Transfectants were analyzed for chemoresistance and associated mechanism in preclinical models. RESULTS: V1 levels in MIBC specimens of patients who developed metastasis, predicted response to gemcitabine + cisplatin adjuvant/salvage treatment and disease-specific mortality. V1-expressing bladder cells were resistant to gemcitabine but not to cisplatin. V1 expression neither affected gemcitabine influx nor the drug-efflux transporters. Instead, V1 increased gemcitabine metabolism and subsequent efflux of difluorodeoxyuridine, by upregulating cytidine deaminase (CDA) expression through increased CD44-JAK2/STAT3 signaling. CDA inhibitor tetrahydrouridine resensitized V1-expressing cells to gemcitabine. While gemcitabine (25-50 mg/kg) inhibited bladder cancer xenograft growth, V1-expressing tumors were resistant. Low-dose combination of gemcitabine and tetrahydrouridine abrogated the growth of V1 tumors with minimal toxicity. CONCLUSIONS: V1/Chase drives gemcitabine resistance and potentially predicts gemcitabine + cisplatin failure. CDA inhibition resensitizes V1-expressing tumors to gemcitabine. Because several chemotherapy regimens include gemcitabine, our study could have broad significance.


Assuntos
Antígenos de Neoplasias/fisiologia , Antimetabólitos Antineoplásicos/uso terapêutico , Condroitinases e Condroitina Liases/fisiologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/fisiologia , Histona Acetiltransferases/fisiologia , Hialuronoglucosaminidase/fisiologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Desoxicitidina/uso terapêutico , Humanos , Camundongos , Prognóstico , Falha de Tratamento , Gencitabina
5.
J Biol Chem ; 296: 100439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33610549

RESUMO

O-GlcNAcylation is an essential post-translational modification that has been implicated in neurodevelopmental and neurodegenerative disorders. O-GlcNAcase (OGA), the sole enzyme catalyzing the removal of O-GlcNAc from proteins, has emerged as a potential drug target. OGA consists of an N-terminal OGA catalytic domain and a C-terminal pseudo histone acetyltransferase (HAT) domain with unknown function. To investigate phenotypes specific to loss of OGA catalytic activity and dissect the role of the HAT domain, we generated a constitutive knock-in mouse line, carrying a mutation of a catalytic aspartic acid to alanine. These mice showed perinatal lethality and abnormal embryonic growth with skewed Mendelian ratios after day E18.5. We observed tissue-specific changes in O-GlcNAc homeostasis regulation to compensate for loss of OGA activity. Using X-ray microcomputed tomography on late gestation embryos, we identified defects in the kidney, brain, liver, and stomach. Taken together, our data suggest that developmental defects during gestation may arise upon prolonged OGA inhibition specifically because of loss of OGA catalytic activity and independent of the function of the HAT domain.


Assuntos
Desenvolvimento Embrionário/fisiologia , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Domínio Catalítico , Desenvolvimento Embrionário/genética , Feminino , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/fisiologia , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/metabolismo , Gravidez , Processamento de Proteína Pós-Traducional , Microtomografia por Raio-X/métodos , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/fisiologia
6.
Int J Biol Macromol ; 170: 326-335, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33373635

RESUMO

Bone remodeling is a complex event that maintains bone homeostasis. The epigenetic mechanism of the regulation of bone remodeling has been a major research focus over the past decades. Histone acetylation is an influential post-translational modification in chromatin architecture. Acetylation affects chromatin structure by offering binding signals for reader proteins that harbor acetyl-lysine recognition domains. This review summarizes recent data of histone acetylation in bone remodeling. The crux of this review is the functional role of histone acetyltransferases, the key promoters of histone acetylation. The functional regulation of acetylation via noncoding RNAs in bone remodeling is also discussed. Understanding the principles governing histone acetylation in bone remodeling would lead to the development of better epigenetic therapies for bone diseases.


Assuntos
Remodelação Óssea/genética , Remodelação Óssea/fisiologia , Histona Acetiltransferases/metabolismo , Acetilação , Animais , Cromatina/genética , Epigênese Genética/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/fisiologia , Histonas/metabolismo , Humanos , Lisina/química , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/genética , Transferases/metabolismo
7.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33152999

RESUMO

Elp3, the catalytic subunit of the eukaryotic Elongator complex, is a lysine acetyltransferase that acetylates the C5 position of wobble-base uridines (U34) in transfer RNAs (tRNAs). This Elongator-dependent RNA acetylation of anticodon bases affects the ribosomal translation elongation rates and directly links acetyl-CoA metabolism to both protein synthesis rates and the proteome integrity. Of note, several human diseases, including various cancers and neurodegenerative disorders, correlate with the dysregulation of Elongator's tRNA modification activity. In this review, we focus on recent findings regarding the structure of Elp3 and the role of acetyl-CoA during its unique modification reaction.


Assuntos
Histona Acetiltransferases/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Acetilação , Animais , Sequência de Bases , Sítios de Ligação , Histona Acetiltransferases/fisiologia , Humanos , Lisina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Elongação Traducional da Cadeia Peptídica/genética , Uridina/metabolismo
8.
Mol Cell Neurosci ; 109: 103570, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33160016

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder hallmarked by amyloid-ß (Aß) plaque accumulation, neuronal cell death, and cognitive deficits that worsen during disease progression. Histone acetylation dysregulation, caused by an imbalance between reduced histone acetyltransferases (HAT) Tip60 and increased histone deacetylase 2 (HDAC2) levels, can directly contribute to AD pathology. However, whether such AD-associated neuroepigenetic alterations occur in response to Aß peptide production and can be protected against by increasing Tip60 levels over the course of neurodegenerative progression remains unknown. Here we profile Tip60 HAT/HDAC2 dynamics and transcriptome-wide changes across early and late stage AD pathology in the Drosophila brain produced solely by human amyloid-ß42. We show that early Aß42 induction leads to disruption of Tip60 HAT/HDAC2 balance during early neurodegenerative stages preceding Aß plaque accumulation that persists into late AD stages. Correlative transcriptome-wide studies reveal alterations in biological processes we classified as transient (early-stage only), late-onset (late-stage only), and constant (both). Increasing Tip60 HAT levels in the Aß42 fly brain protects against AD functional pathologies that include Aß plaque accumulation, neural cell death, cognitive deficits, and shorter life-span. Strikingly, Tip60 protects against Aß42-induced transcriptomic alterations via distinct mechanisms during early and late stages of neurodegeneration. Our findings reveal distinct modes of neuroepigenetic gene changes and Tip60 neuroprotection in early versus late stages in AD that can serve as early biomarkers for AD, and support the therapeutic potential of Tip60 over the course of AD progression.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Histona Acetiltransferases/fisiologia , Degeneração Neural/genética , Fragmentos de Peptídeos/toxicidade , Transcriptoma , Acetilação , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Apoptose , Aprendizagem por Associação/fisiologia , Modelos Animais de Doenças , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Código das Histonas , Histona Desacetilase 2/fisiologia , Larva , Locomoção , Longevidade , Aprendizagem em Labirinto , Odorantes , Processamento de Proteína Pós-Traducional , Olfato/fisiologia
9.
Sci Rep ; 10(1): 17951, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087840

RESUMO

Circadian clocks keep time via ~ 24 h transcriptional feedback loops. In Drosophila, CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors are feedback loop components whose transcriptional status varies over a circadian cycle. Although changes in the state of activators and repressors has been characterized, how their status is translated to transcriptional activity is not understood. We used mass spectrometry to identify proteins that interact with GFP-tagged CLK (GFP-CLK) in fly heads at different times of day. Many expected and novel interacting proteins were detected, of which several interacted rhythmically and were potential regulators of protein levels, activity or transcriptional output. Genes encoding these proteins were tested to determine if they altered circadian behavior via RNAi knockdown in clock cells. The NIPPED-A protein, a scaffold for the SAGA and Tip60 histone modifying complexes, interacts with GFP-CLK as transcription is activated, and reducing Nipped-A expression lengthens circadian period. RNAi analysis of other SAGA complex components shows that the SAGA histone deubiquitination (DUB) module lengthened period similarly to Nipped-A RNAi knockdown and weakened rhythmicity, whereas reducing Tip60 HAT expression drastically weakened rhythmicity. These results suggest that CLK-CYC binds NIPPED-A early in the day to promote transcription through SAGA DUB and Tip60 HAT activity.


Assuntos
Proteínas CLOCK/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/genética , Drosophila/fisiologia , Histona Acetiltransferases/fisiologia , Proteômica , Fatores de Transcrição/fisiologia , Animais , Proteínas de Drosophila/genética , Expressão Gênica , Histona Acetiltransferases/genética , Ligação Proteica , Interferência de RNA , Fatores de Transcrição/genética , Transcrição Gênica
10.
Life Sci Alliance ; 3(11)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913112

RESUMO

Histone acetylation is one of many posttranslational modifications that affect nucleosome accessibility. Vps75 is a histone chaperone that stimulates Rtt109 acetyltransferase activity toward histones H3-H4 in yeast. In this study, we use sedimentation velocity and light scattering to characterize various Vps75-Rtt109 complexes, both with and without H3-H4. These complexes were previously ill-defined because of protein multivalency and oligomerization. We determine both relative and absolute stoichiometry and define the most pertinent and homogeneous complexes. We show that the Vps75 dimer contains two unequal binding sites for Rtt109, with the weaker binding site being dispensable for H3-H4 acetylation. We further show that the Vps75-Rtt109-(H3-H4) complex is in equilibrium between a 2:1:1 species and a 4:2:2 species. Using a dimerization mutant of H3, we show that this equilibrium is mediated by the four-helix bundle between the two copies of H3. We optimize the purity, yield, and homogeneity of Vps75-Rtt109 complexes and determine optimal conditions for solubility when H3-H4 is added. Our comprehensive biochemical and biophysical approach ultimately defines the large-scale preparation of Vps75-Rtt109-(H3-H4) complexes with precise stoichiometry. This is an essential prerequisite for ongoing high-resolution structural and functional analysis of this important multi-subunit complex.


Assuntos
Histona Acetiltransferases/metabolismo , Histonas/química , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X/métodos , Dimerização , Histona Acetiltransferases/genética , Histona Acetiltransferases/fisiologia , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
11.
Nat Plants ; 6(7): 809-822, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32665652

RESUMO

Axillary meristem development determines both plant architecture and crop yield; this critical process is regulated by the PROLIFERATING CELL FACTORS (TCP) family of transcription factors. Although TCP proteins bind primarily to promoter regions, some also target gene bodies for expression activation. However, the underlying regulatory mechanism remains unknown. Here we show that TEN, a TCP from cucumber (Cucumis sativus L.), controls the identity and mobility of tendrils. Through its C terminus, TEN binds at intragenic enhancers of target genes; its N-terminal domain functions as a non-canonical histone acetyltransferase (HAT) to preferentially act on lysine 56 and 122 of the histone H3 globular domain. This HAT activity is responsible for chromatin loosening and host-gene activation. The N termini of all tested CYCLOIDEA and TEOSINTE BRANCHED 1-like TCP proteins contain an intrinsically disordered region; despite their sequence divergence, they have conserved HAT activity. This study identifies a non-canonical class of HATs and provides a mechanism by which modification at the H3 globular domain is integrated with the transcription process.


Assuntos
Histona Acetiltransferases/fisiologia , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Sítios de Ligação , Cucumis sativus/enzimologia , Cucumis sativus/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Histona Acetiltransferases/metabolismo
12.
Metabolism ; 109: 154290, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32522488

RESUMO

BACKGROUND: Males absent on the first (Mof) is implicated in gene control of diverse biological processes, such as cell growth, differentiation, apoptosis and autophagy. However, the relationship between glucose regulation and Mof-mediated transcription events remains unexplored. We aimed to unravel the role of Mof in glucose regulation by using global and pancreatic α-cell-specific Mof-deficient mice in vivo and α-TC1-6 cell line in vitro. METHODS: We used tamoxifen-induced temporal Mof-deficient mice first to show Mof regulate glucose homeostasis, islet cell proportions and hormone secretion. Then we used α-cell-specific Mof-deficient mice to clarify how α-cell subsets and ß-cell mass were regulated and corresponding hormone level alterations. Ultimately, we used small interfering RNA (siRNA) to knockdown Mof in α-TC1-6 and unravel the mechanism regulating α-cell mass and glucagon secretion. RESULTS: Mof was mainly expressed in α-cells. Global Mof deficiency led to lower glucose levels, attributed by decreased α/ß-cell ratio and glucagon secretion. α-cell-specific Mof-deficient mice exhibited similar alterations, with more reduced prohormone convertase 2 (PC2)-positive α-cell mass, responsible for less glucagon, and enhanced prohormone convertase 1 (PC1/3)-positive α-cell mass, leading to more glucagon-like peptide-1 (GLP-1) secretion, thus increased ß-cell mass and insulin secretion. In vitro, increased DNA damage, dysregulated autophagy, enhanced apoptosis and altered cell fate factors expressions upon Mof knockdown were observed. Genes and pathways linked to impaired glucagon secretion were uncovered through transcriptome sequencing. CONCLUSION: Mof is a potential interventional target for glucose regulation, from the aspects of both α-cell subset mass and glucagon, intra-islet GLP-1 secretion. Upon Mof deficiency, Up-regulated PC1/3 but down-regulated PC2-positive α-cell mass, leads to more GLP-1 and insulin but less glucagon secretion, and contributed to lower glucose level.


Assuntos
Glicemia/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Glucagon/citologia , Glucagon/metabolismo , Histona Acetiltransferases/fisiologia , Homeostase , Animais , Linhagem Celular , Histona Acetiltransferases/deficiência , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Pró-Proteína Convertase 1/metabolismo , Pró-Proteína Convertase 2/metabolismo
13.
Nat Cell Biol ; 22(7): 828-841, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32541879

RESUMO

Mutations in chromatin-modifying complexes and metabolic enzymes commonly underlie complex human developmental syndromes affecting multiple organs. A major challenge is to determine how disease-causing genetic lesions cause deregulation of homeostasis in unique cell types. Here we show that neural-specific depletion of three members of the non-specific lethal (NSL) chromatin complex-Mof, Kansl2 or Kansl3-unexpectedly leads to severe vascular defects and brain haemorrhaging. Deregulation of the epigenetic landscape induced by the loss of the NSL complex in neural cells causes widespread metabolic defects, including an accumulation of free long-chain fatty acids (LCFAs). Free LCFAs induce a Toll-like receptor 4 (TLR4)-NFκB-dependent pro-inflammatory signalling cascade in neighbouring vascular pericytes that is rescued by TLR4 inhibition. Pericytes display functional changes in response to LCFA-induced activation that result in vascular breakdown. Our work establishes that neurovascular function is determined by the neural metabolic environment.


Assuntos
Núcleo Celular/patologia , Cromatina/metabolismo , Histona Acetiltransferases/fisiologia , Inflamação/patologia , Neovascularização Patológica/patologia , Neurônios/patologia , Pericitos/patologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Cromatina/genética , Ácidos Graxos/metabolismo , Feminino , Feto/citologia , Feto/metabolismo , Humanos , Inflamação/metabolismo , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pericitos/metabolismo
14.
Genes Genet Syst ; 94(5): 197-206, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31694990

RESUMO

Genome instability is a cause of cellular senescence. The ribosomal RNA gene repeat (rDNA) is one of the most unstable regions in the genome and its instability is proposed to be a major inducer of cellular senescence and restricted lifespan. We previously conducted a genome-wide screen using a budding yeast deletion library to identify mutants that exhibit a change in the stability of the rDNA region, compared to the wild-type. To investigate the correlation between rDNA stability and lifespan, we examined deletion mutants with very stable rDNA and found that deletion of EAF3, encoding a component of the NuA4 histone acetyltransferase complex, reproducibly resulted in increased stabilization of the rDNA. In the absence of Eaf3, and of other subunits of the NuA4 complex, we observed lower levels of extrachromosomal rDNA circles that are produced by recombination in the rDNA and are thus an indicator of rDNA instability. The replicative lifespan in the eaf3 mutant was extended by ~30%, compared to the wild-type strain. Our findings provide evidence that rDNA stability is correlated with extended replicative lifespan. The eaf3 mutation possibly affects the non-coding transcription in rDNA that regulates rDNA recombination through cohesin dissociation.


Assuntos
Senescência Celular/genética , DNA Ribossômico/fisiologia , Genes de RNAr , Histona Acetiltransferases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Acetiltransferases/genética , Acetiltransferases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação Fúngica da Expressão Gênica , Instabilidade Genômica , Histona Acetiltransferases/genética , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/fisiologia , Sirtuína 2/fisiologia
15.
Exp Gerontol ; 126: 110690, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31419472

RESUMO

SKN-1/Nrf transcription factors regulate diverse biological processes essentially stress defense, detoxification, and longevity. Studies in model organisms have identified a broad range of regulatory processes and mechanisms that profoundly influence SKN-1/Nrf functions. Defining the mechanisms how SKN-1 is regulated will provide insight how cells defend against diverse stressors contributing to aging and disease. In this study, we demonstrate a crucial role for the acetyltransferase CBP-1, the C. elegans homolog of mammalian CREB-binding protein CBP/p300 in the activation of SKN-1. cbp-1 is essential for tolerance of oxidative stress and normal lifespan. CBP-1 directly interacts with SKN-1 and increases SKN-1 protein abundance. In particular CBP-1 modulates SKN-1 nuclear translocation under basal conditions and in response to stress and promotes SKN-1-dependent transcription of protective genes. Moreover, CBP-1 is required for SKN-1 nuclear recruitment, transcriptional activity, and longevity due to reduced insulin/IGF-1-like signaling, mTOR-, and GSK-3 signaling. Our findings establish the acetyltransferase CBP-1 as a critical activator of SKN-1 that directly modulates SKN-1 protein stability, nuclear localization, and function to ascertain normal stress response and lifespan.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Fatores de Transcrição de p300-CBP/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/fisiologia , Longevidade/fisiologia , Estresse Oxidativo/fisiologia , Fatores de Transcrição/genética
16.
Sci Rep ; 9(1): 10730, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341187

RESUMO

The TATA-box binding protein associated factor 1 (TAF1) protein is a key unit of the transcription factor II D complex that serves a vital function during transcription initiation. Variants of TAF1 have been associated with neurodevelopmental disorders, but TAF1's molecular functions remain elusive. In this study, we present a five-generation family affected with X-linked intellectual disability that co-segregated with a TAF1 c.3568C>T, p.(Arg1190Cys) variant. All affected males presented with intellectual disability and dysmorphic features, while heterozygous females were asymptomatic and had completely skewed X-chromosome inactivation. We investigated the role of TAF1 and its association to neurodevelopment by creating the first complete knockout model of the TAF1 orthologue in zebrafish. A crucial function of human TAF1 during embryogenesis can be inferred from the model, demonstrating that intact taf1 is essential for embryonic development. Transcriptome analysis of taf1 zebrafish knockout revealed enrichment for genes associated with neurodevelopmental processes. In conclusion, we propose that functional TAF1 is essential for embryonic development and specifically neurodevelopmental processes.


Assuntos
Histona Acetiltransferases/fisiologia , Deficiência Intelectual/genética , Sistema Nervoso/crescimento & desenvolvimento , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Fator de Transcrição TFIID/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/genética , Humanos , Masculino , Retardo Mental Ligado ao Cromossomo X/genética , Sistema Nervoso/embriologia , Linhagem , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
17.
Biol Res ; 52(1): 20, 2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30954076

RESUMO

BACKGROUND: Histone acetylation is an important epigenetic modification that regulates gene activity in response to stress. Histone acetylation levels are reversibly regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The imperative roles of HDACs in gene transcription, transcriptional regulation, growth and responses to stressful environment have been widely investigated in Arabidopsis. However, data regarding HDACs in kenaf crop has not been disclosed yet. RESULTS: In this study, six HDACs genes (HcHDA2, HcHDA6, HcHDA8, HcHDA9, HcHDA19, and HcSRT2) were isolated and characterized. Phylogenetic tree revealed that these HcHDACs shared high degree of sequence homology with those of Gossypium arboreum. Subcellular localization analysis showed that GFP-tagged HcHDA2 and HcHDA8 were predominantly localized in the nucleus, HcHDA6 and HcHDA19 in nucleus and cytosol. The HcHDA9 was found in both nucleus and plasma membranes. Real-time quantitative PCR showed that the six HcHDACs genes were expressed with distinct expression patterns across plant tissues. Furthermore, we determined differential accumulation of HcHDACs transcripts under salt and drought treatments, indicating that these enzymes may participate in the biological process under stress in kenaf. Finally, we showed that the levels of histone H3 and H4 acetylation were modulated by salt and drought stress in kenaf. CONCLUSIONS: We have isolated and characterized six HDACs genes from kenaf. These data showed that HDACs are imperative players for growth and development as well abiotic stress responses in kenaf.


Assuntos
Secas , Hibiscus/enzimologia , Histona Acetiltransferases/fisiologia , Histona Desacetilases/fisiologia , Estresse Fisiológico/fisiologia , Clonagem Molecular , Hibiscus/crescimento & desenvolvimento , Hibiscus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Ativação Transcricional/fisiologia
18.
Transcription ; 10(1): 37-43, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30375921

RESUMO

SAGA and NuA4 are coactivator complexes required for transcription on chromatin. Although they contain different enzymatic and biochemical activities, both contain the large Tra1 subunit. Recent electron microscopy studies have resolved the complete structure of Tra1 and its integration in SAGA/NuA4, providing important insight into Tra1 function.


Assuntos
Histona Acetiltransferases/fisiologia , Glicoproteínas de Membrana/fisiologia , Modelos Genéticos , Proteínas de Saccharomyces cerevisiae/fisiologia , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Transativadores/fisiologia , Ativação Transcricional
19.
Biol. Res ; 52: 20, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011422

RESUMO

BACKGROUND: Histone acetylation is an important epigenetic modification that regulates gene activity in response to stress. Histone acetylation levels are reversibly regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The imperative roles of HDACs in gene transcription, transcriptional regulation, growth and responses to stressful environment have been widely investigated in Arabidopsis. However, data regarding HDACs in kenaf crop has not been disclosed yet. RESULTS: In this study, six HDACs genes (HcHDA2, HcHDA6, HcHDA8, HcHDA9, HcHDA19, and HcSRT2) were isolated and characterized. Phylogenetic tree revealed that these HcHDACs shared high degree of sequence homology with those of Gossypium arboreum. Subcellular localization analysis showed that GFP-tagged HcHDA2 and HcHDA8 were predominantly localized in the nucleus, HcHDA6 and HcHDA19 in nucleus and cytosol. The HcHDA9 was found in both nucleus and plasma membranes. Real-time quantitative PCR showed that the six HcHDACs genes were expressed with distinct expression patterns across plant tissues. Furthermore, we determined differential accumulation of HcHDACs transcripts under salt and drought treatments, indicating that these enzymes may participate in the biological process under stress in kenaf. Finally, we showed that the levels of histone H3 and H4 acetylation were modulated by salt and drought stress in kenaf. CONCLUSIONS: We have isolated and characterized six HDACs genes from kenaf. These data showed that HDACs are imperative players for growth and development as well abiotic stress responses in kenaf.


Assuntos
Estresse Fisiológico/fisiologia , Hibiscus/enzimologia , Histona Acetiltransferases/fisiologia , Secas , Histona Desacetilases/fisiologia , Ativação Transcricional/fisiologia , Clonagem Molecular , Hibiscus/crescimento & desenvolvimento , Hibiscus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
20.
Genes Dev ; 32(17-18): 1252-1265, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108132

RESUMO

The transcriptional coactivators Mediator and two histone acetyltransferase (HAT) complexes, NuA4 and SAGA, play global roles in transcriptional activation. Here we explore the relative contributions of these factors to RNA polymerase II association at specific genes and gene classes by rapid nuclear depletion of key complex subunits. We show that the NuA4 HAT Esa1 differentially affects certain groups of genes, whereas the SAGA HAT Gcn5 has a weaker but more uniform effect. Relative dependence on Esa1 and Tra1, a shared component of NuA4 and SAGA, distinguishes two large groups of coregulated growth-promoting genes. In contrast, we show that the activity of Mediator is particularly important at a separate, small set of highly transcribed TATA-box-containing genes. Our analysis indicates that at least three distinct combinations of coactivator deployment are used to generate moderate or high transcription levels and suggests that each may be associated with distinct forms of regulation.


Assuntos
Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/fisiologia , Complexo Mediador/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Ativação Transcricional , Acetilação , Histonas/metabolismo , Complexo Mediador/metabolismo , Estresse Oxidativo/genética , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...